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Problem 3

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

1

2n− 1
.

Solution. Compare it to
∞∑

n=1

1

2n
, which we know diverges.

1

2n− 1
≥ 1

2n
,

2n ≥ 2n− 1,

which is clearly true and all the steps are logically reversible. Therefore,
∞∑

n=1

1

2n− 1

diverges.

Problem 4

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

1

3n2 + 2
.

Solution. Compare it to
∞∑

n=1

1

3n2
, which we know converges.

1

3n2 + 2
≤ 1

3n2
,

3n2 ≤ 3n2 + 2,

which is clearly true and all the steps are logically reversible. Therefore,
∞∑

n=1

1

3n2 + 2
converges.

Problem 5

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

1√
n− 1

.
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Solution. Compare it to
∞∑

n=1

1√
n

, which we know diverges (p < 1).

1√
n− 1

≥ 1√
n

,

√
n ≥
√

n− 1,

which is clearly true and all the steps are logically reversible. Therefore,
∞∑

n=1

1√
n− 1

diverges.

Problem 6

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

4n

5n + 3
.

Solution. Compare it to
∞∑

n=1

4n

5n
, which we know converges (|r| < 1).

4n

5n + 3
≤ 4n

5n
,

4n · 5n ≤ 4n(5n + 3),

which is clearly true and all the steps are logically reversible. Therefore,
∞∑

n=1

4n

5n + 3
converges.

Problem 7

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

ln n

n + 1
.

Solution. We have to be a wee bit creative here. Compare
∞∑

n=2

ln n

n + 1
to

∞∑
n=1

1

n + 1
.

We know that
∞∑

n=1

1

n
diverges and we see that

∞∑
n=1

1

n + 1
=
∞∑

n=2

1

n
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so it follows that
∞∑

n=1

1

n + 1
diverges. (The first term cannot make the difference

between convergence and divergence.)

Now compare the terms.

ln n

n + 1
≥ 1

n + 1
,

ln n ≥ 1,

which is clearly true and all the steps are logically reversible. Therefore,
∞∑

n=1

ln n

n + 1
converges.

You could solve this problem by comparing
∞∑

n=1

ln n

n + 1
directly to

∞∑
n=1

1

n
, but then

you would have to verify the inequality n ln n ≥ n + 1 for all n from some point on.

That can be done, but it is harder to do than what we just did.

Problem 8

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

1√
n3 + 1

.

Solution. Without the +1, this expression would be
1

n3/2
. So let’s compare it to

∞∑
n=1

1

n3/2
, which we know converges.

1
3
√

n + 1
≤ 1

n3/2
,

n3/2 ≤ 3
√

n3 + 1,

n3 ≤ n3 + 1,

which is clearly true and all the steps are logically reversible. Therefore,
∞∑

n=1

1√
n3 + 1

converges.
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Problem 9

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

1

n!
.

Solution. Consider the series
∞∑

n=1

1

2n−1
, which we know converges (geometric).

1

n!
≤ 1

2n−1
,

2n−1 ≤ n!,

2 · 2 · 2 · · · 2 (n− 1 factors) ≤ n(n− 1)(n− 2) · · · 2 · 1 (n factors),

2 · 2 · 2 · · · 2 (n− 1 factors) ≤ n(n− 1)(n− 2) · · · 2 (n− 1 factors),

This is true because each factor on the left is less than or equal to the corresponding

factor on the right. Therefore,
∞∑

n=1

1

n!
converges.

Problem 10

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

1

4 3
√

n− 1
.

Solution. Without the 4 and −1, the denominator would be n1/3, so let’s compare it

to
∞∑

n=1

1

4n1/3
, which we know diverges.

1

4 3
√

n− 1
≥ 1

4n1/3
,

4n1/3 ≥ 4 3
√

n− 1,

which is clearly true and all the steps are logically reversible. Therefore,
∞∑

n=1

1

4 3
√

n− 1

diverges.
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Problem 11

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

e−n2

.

Solution. The series
∞∑

n=1

e−n is a convergent geometric series (r = e−n), so let’s com-

pare
∞∑

n=1

e−n2

to
∞∑

n=1

e−n.

e−n2 ≤ e−n,

en ≤ en2

,

1 ≤ en2−1,

which is clearly true for all n ≥ 1 and each step is logically reversible. Therefore,
∞∑

n=1

e−n2

converges.

Problem 12

Problem. Use the Direct Comparison Test to determine the convergence or divergence

of the series
∞∑

n=1

3n

2n − 1
.

Solution. Without the −1, this would be
∞∑

n=1

3n

2n
, which is a divergent geometric series

(r = 3
2
). So let’s compare

∞∑
n=1

3n

2n − 1
to

∞∑
n=1

3n

2n
.

3n

2n − 1
≥ 3n

2n
,

3n · 2n ≥ 3n(2n − 1),

2n ≥ 2n − 1,

which is clearly true and each step is logically reversible. Therefore,
∞∑

n=1

3n

2n − 1
di-

verges.
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