Monday, November 23, 2015

p. 616: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Problem 3

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{2n-1}$. Solution. Compare it to $\sum_{n=1}^{\infty} \frac{1}{2n}$, which we know diverges. $\frac{1}{2n-1} \ge \frac{1}{2n}$, $2n \ge 2n-1$,

which is clearly true and all the steps are logically reversible. Therefore, $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ diverges.

Problem 4

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{3n^2 + 2}$. Solution. Compare it to $\sum_{n=1}^{\infty} \frac{1}{3n^2}$, which we know converges. $\frac{1}{3n^2 + 2} \leq \frac{1}{3n^2}$, $3n^2 < 3n^2 + 2$.

which is clearly true and all the steps are logically reversible. Therefore, $\sum_{n=1}^{\infty} \frac{1}{3n^2+2}$ converges.

Problem 5

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}-1}$.

Solution. Compare it to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, which we know diverges (p < 1). $\frac{1}{\sqrt{n-1}} \ge \frac{1}{\sqrt{n}},$ $\sqrt{n} \ge \sqrt{n} - 1,$

which is clearly true and all the steps are logically reversible. Therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n-1}}$ diverges.

Problem 6

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{4^n}{5^n+3}$. Solution. Compare it to $\sum_{n=1}^{\infty} \frac{4^n}{5^n}$, which we know converges (|r| < 1). $\frac{4^n}{5^n+3} \le \frac{4^n}{5^n},$ $4^n \cdot 5^n < 4^n (5^n + 3).$

which is clearly true and all the steps are logically reversible. Therefore, $\sum_{n=1}^{\infty} \frac{4^n}{5^n+3}$ converges.

Problem 7

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{i=1}^{\infty} \frac{\ln n}{n+1}$.

Solution. We have to be a wee bit creative here. Compare $\sum_{n=1}^{\infty} \frac{\ln n}{n+1}$ to $\sum_{n=1}^{\infty} \frac{1}{n+1}$.

We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and we see that $\sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{n=1}^{\infty} 1$

$$\sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{n=2}^{\infty} \frac{1}{n}$$

so it follows that $\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges. (The first term cannot make the difference between convergence and divergence.)

Now compare the terms.

$$\frac{\ln n}{n+1} \ge \frac{1}{n+1}$$
$$\ln n \ge 1,$$

which is clearly true and all the steps are logically reversible. Therefore, $\sum_{n=1}^{\infty} \frac{\ln n}{n+1}$ converges.

You could solve this problem by comparing $\sum_{n=1}^{\infty} \frac{\ln n}{n+1}$ directly to $\sum_{n=1}^{\infty} \frac{1}{n}$, but then you would have to verify the inequality $n \ln n \ge n+1$ for all n from some point on. That can be done, but it is harder to do than what we just did.

Problem 8

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$.

Solution. Without the +1, this expression would be $\frac{1}{n^{3/2}}$. So let's compare it to $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$, which we know converges.

$$\frac{1}{\sqrt[3]{n+1}} \le \frac{1}{n^{3/2}},$$
$$n^{3/2} \le \sqrt[3]{n^3+1},$$
$$n^3 \le n^3 + 1,$$

which is clearly true and all the steps are logically reversible. Therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$ converges.

Problem 9

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n!}$. Solution. Consider the series $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$, which we know converges (geometric). $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$, $2^{n-1} \leq n!$, $2 \cdot 2 \cdot 2 \cdots 2 (n-1 \text{ factors}) \leq n(n-1)(n-2) \cdots 2 \cdot 1 (n \text{ factors})$, $2 \cdot 2 \cdot 2 \cdots 2 (n-1 \text{ factors}) \leq n(n-1)(n-2) \cdots 2 (n-1 \text{ factors})$,

This is true because each factor on the left is less than or equal to the corresponding factor on the right. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges.

Problem 10

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{4\sqrt[3]{n-1}}.$

Solution. Without the 4 and -1, the denominator would be $n^{1/3}$, so let's compare it to $\sum_{n=1}^{\infty} \frac{1}{4n^{1/3}}$, which we know diverges.

$$\frac{1}{4\sqrt[3]{n-1}} \ge \frac{1}{4n^{1/3}},$$
$$4n^{1/3} \ge 4\sqrt[3]{n-1},$$

which is clearly true and all the steps are logically reversible. Therefore, $\sum_{n=1}^{\infty} \frac{1}{4\sqrt[3]{n-1}}$ diverges.

Problem 11

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} e^{-n^2}$. Solution. The series $\sum_{n=1}^{\infty} e^{-n}$ is a convergent geometric series $(r = e^{-n})$, so let's compare $\sum_{n=1}^{\infty} e^{-n^2}$ to $\sum_{n=1}^{\infty} e^{-n}$. $e^{-n^2} \le e^{-n}$, $e^n \le e^{n^2}$, $1 \le e^{n^2-1}$,

which is clearly true for all $n \ge 1$ and each step is logically reversible. Therefore, $\sum_{n=1}^{\infty} e^{-n^2}$ converges.

Problem 12

Problem. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{3^n}{2^n - 1}$.

Solution. Without the -1, this would be $\sum_{n=1}^{\infty} \frac{3^n}{2^n}$, which is a divergent geometric series $(r = \frac{3}{2})$. So let's compare $\sum_{n=1}^{\infty} \frac{3^n}{2^n - 1}$ to $\sum_{n=1}^{\infty} \frac{3^n}{2^n}$. $\frac{3^n}{2^n - 1} \ge \frac{3^n}{2^n}$, $3^n \cdot 2^n \ge 3^n(2^n - 1)$, $2^n \ge 2^n - 1$,

which is clearly true and each step is logically reversible. Therefore, $\sum_{n=1}^{\infty} \frac{3^n}{2^n - 1}$ diverges.